Exercise 20

A spring with a mass of 2 kg has damping constant 16 , and a force of 12.8 N keeps the spring stretched 0.2 m beyond its natural length. Find the position of the mass at time t if it starts at the equilibrium position with a velocity of $2.4 \mathrm{~m} / \mathrm{s}$.

Solution

Use the fact that a 12.8 N force stretches the spring 0.2 m to determine the spring constant k.

$$
\begin{gathered}
F=k\left(x-x_{0}\right) \\
12.8 \mathrm{~N}=k(0.2 \mathrm{~m}) \\
k=64 \frac{\mathrm{~N}}{\mathrm{~m}}
\end{gathered}
$$

The initial value problem for position is

$$
m \frac{d^{2} x}{d t^{2}}+c \frac{d x}{d t}+k x=0, \quad x(0)=0, \quad x^{\prime}(0)=2.4
$$

Because it has constant coefficients, it has solutions of the form $x=e^{r t}$.

$$
x=e^{r t} \quad \rightarrow \quad \frac{d x}{d t}=r e^{r t} \quad \rightarrow \quad \frac{d^{2} x}{d t^{2}}=r^{2} e^{r t}
$$

Substitute these formulas into the ODE.

$$
m\left(r^{2} e^{r t}\right)+c\left(r e^{r t}\right)+k\left(e^{r t}\right)=0
$$

Divide both sides by $e^{r t}$.

$$
m r^{2}+c r+k=0
$$

Solve for r, noting that with the given values $c^{2}-4 m k<0$.

$$
\begin{gathered}
r=\frac{-c \pm \sqrt{c^{2}-4 m k}}{2 m}=\frac{-c \pm i \sqrt{4 m k-c^{2}}}{2 m} \\
r=\left\{\frac{-c-i \sqrt{4 m k-c^{2}}}{2 m}, \frac{-c+i \sqrt{4 m k-c^{2}}}{2 m}\right\}
\end{gathered}
$$

Two solutions to equation (1) are

$$
\exp \left(\frac{-c-i \sqrt{4 m k-c^{2}}}{2 m} t\right) \quad \text { and } \quad \exp \left(\frac{-c+i \sqrt{4 m k-c^{2}}}{2 m} t\right) .
$$

According to the principle of superposition, the general solution is a linear combination of these two.

$$
\begin{aligned}
x(t) & =C_{1} \exp \left(\frac{-c-i \sqrt{4 m k-c^{2}}}{2 m} t\right)+C_{2} \exp \left(\frac{-c+i \sqrt{4 m k-c^{2}}}{2 m} t\right) \\
& =C_{1} \exp \left(-\frac{c}{2 m} t\right) \exp \left(-i \frac{\sqrt{4 m k-c^{2}}}{2 m} t\right)+C_{2} \exp \left(-\frac{c}{2 m} t\right) \exp \left(i \frac{\sqrt{4 m k-c^{2}}}{2 m} t\right) \\
& =\exp \left(-\frac{c}{2 m} t\right)\left[C_{1} \exp \left(-i \frac{\sqrt{4 m k-c^{2}}}{2 m} t\right)+C_{2} \exp \left(i \frac{\sqrt{4 m k-c^{2}}}{2 m} t\right)\right] \\
& =\exp \left(-\frac{c}{2 m} t\right)\left[C_{1}\left(\cos \frac{\sqrt{4 m k-c^{2}}}{2 m} t-i \sin \frac{\sqrt{4 m k-c^{2}}}{2 m} t\right)\right. \\
& \left.+C_{2}\left(\cos \frac{\sqrt{4 m k-c^{2}}}{2 m} t+i \sin \frac{\sqrt{4 m k-c^{2}}}{2 m} t\right)\right] \\
& =\exp \left(-\frac{c}{2 m} t\right)\left[\left(C_{1}+C_{2}\right) \cos \frac{\sqrt{4 m k-c^{2}}}{2 m} t+\left(-i C_{1}+i C_{2}\right) \sin \frac{\sqrt{4 m k-c^{2}}}{2 m} t\right] \\
& =\exp \left(-\frac{c}{2 m} t\right)\left(C_{3} \cos \frac{\sqrt{4 m k-c^{2}}}{2 m} t+C_{4} \sin \frac{\sqrt{4 m k-c^{2}}}{2 m} t\right)
\end{aligned}
$$

Differentiate it with respect to t.

$$
\begin{aligned}
\frac{d x}{d t}=- & \frac{c}{2 m} \exp \left(-\frac{c}{2 m} t\right)\left(C_{3} \cos \frac{\sqrt{4 m k-c^{2}}}{2 m} t+C_{4} \sin \frac{\sqrt{4 m k-c^{2}}}{2 m} t\right) \\
& +\exp \left(-\frac{c}{2 m} t\right)\left(-C_{3} \frac{\sqrt{4 m k-c^{2}}}{2 m} \sin \frac{\sqrt{4 m k-c^{2}}}{2 m} t+C_{4} \frac{\sqrt{4 m k-c^{2}}}{2 m} \cos \frac{\sqrt{4 m k-c^{2}}}{2 m} t\right)
\end{aligned}
$$

Apply the initial conditions to determine C_{3} and C_{4}.

$$
\begin{aligned}
x(0) & =C_{3}=0 \\
\frac{d x}{d t}(0) & =-\frac{c}{2 m} C_{3}+C_{4} \frac{\sqrt{4 m k-c^{2}}}{2 m}=2.4
\end{aligned}
$$

Solving this system yields

$$
C_{3}=0 \quad \text { and } \quad C_{4}=\frac{24 m}{5 \sqrt{4 m k-c^{2}}}
$$

which means the solution to the initial value problem is

$$
x(t)=\frac{24 m}{5 \sqrt{4 m k-c^{2}}} \exp \left(-\frac{c}{2 m} t\right) \sin \frac{\sqrt{4 m k-c^{2}}}{2 m} t .
$$

Therefore, plugging in $m=2 \mathrm{~kg}, c=16 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}$, and $k=64 \mathrm{~N} / \mathrm{m}$,

$$
x(t)=\frac{3}{5} e^{-4 t} \sin 4 t
$$

Below is a plot of the displacement from equilibrium (in meters) versus time (in seconds).

